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ABSTRACT

Gravitational N-body simulations, that is numerical solutions of the equa-
tions of motions for N particles interacting gravitationally, are widely used tools
in astrophysics, with applications from few body or solar system like systems all
the way up to galactic and cosmological scales. In this article we present a sum-
mary review of the field highlighting the main methods for N-body simulations
and the astrophysical context in which they are usually applied.

1 Introduction

The underlying dynamics relevant in the astrophysical context for of a system of
N particles interacting gravitationally is typically Newton’s law plus, in case, an
external potential field (see however below for a discussion of N-body simulations

in general relativity). The force ~Fi acting on particle i of mass mi is:

~Fi = −
∑

j 6=i

G
mimj(~ri − ~rj)

|~ri − ~rj |3
− ~∇ · φext(~ri), (1)

where G = 6.67300 · 10−11 m3 kg−1 s−2 is the gravitational constant, and φext

is the external potential. The problem is thus a set of non-linear second order
ordinary differential equations relating the acceleration ∂2~ri/∂t2 = ~Fi/mi with
the position of all the particles in the system.

Once a set of initial condition is specified (for example the initial positions
~ri and velocities ~vi ≡ ∂~ri/∂t of all particles) it exists a unique solution, ana-
lytical only for up to two bodies, while larger N require numerical integration
(e.g. see Press et al. 2007). However special care must be employed to ensure
both accuracy and efficiency. In fact, the gravitational force (eq. 1) presents a
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singularity when the distance of two particles approaches 0, which can lead to
arbitrarily large relative velocities. In addition, given the non-linear nature of
the equations, the singularities are movable, that is they depend on the specific
choice of initial conditions. In contrast, all singularities in linear ordinary dif-
ferential equations are independent of initial conditions and thus easier to treat.
Therefore constant timestep methods are unable to guarantee a given accuracy
in the case of gravitational dynamics and lead to unphysical accelerations during
close encounters, which in turn may create unbound stars. A shared adaptive
timestep scheme can correctly follow a close encounter, but the price is paid in
terms of efficiency as all the other particles of the system are evolved on the
timescale of the encounter, which may be several orders of magnitude smaller
than the global timescale, resulting essentially in a freezing of the system.

The singularity may be avoided by introducing a smoothing length in Eq. 1
(e.g. see Aarseth 1963), that is by modifying the gravitational interaction at
small scales. For example:

~Fi = −
∑

j 6=i

Gmimj(~ri − ~rj)

(|~ri − ~rj |2 + ǫ2)3/2
, (2)

where ǫ > 0 is the softening, or smoothing length, that is a typical distance
below which the gravitational interaction is suppressed. To minimize the force
errors and the global impact of the softening for distances larger than ǫ, finite
size kernels that ensure continuous derivatives of the force may be employed
(e.g., see Dehnen 2001). This strategy effectively suppresses binary formation
and strong gravitational interactions, but at the price of altering the dynamics
of the system.

The computational complexity of the numerical solution of a N-body system
for a fixed number of timesteps scales as N2, as the evaluation of the force on
each particle requires to take into account contributions from all other members
of the system. For example, considering a single state of the art cpu core (speed
≈ 5 GFlops), a single force evaluation through a direct method would require
about 1 second for a system with N = 104 particles (assuming 10 floating point
operations per pair of particles) and more than a week for N = 107.

The arbitrarily large dynamic range in the unsoftened dynamics and the
expensive evaluation of the force have led to the development of a wide number
of numerical techniques aimed at obtaining a reliable numerical solution with the
minimum amount of computational resources, depending on the astrophysical
problem of interest. Here we start by discussing the different astrophysical
contexts where N-body simulations are routinely employed and we then present
the state of the art techniques for these problems.

2 Astrophysical domains and timescales

N-body simulations are applied to a wide range of different astrophysical prob-
lems so that the most appropriate technique to use depends on the specific
context, and in particular on the timescale and collisionality of the problem.
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2.1 Timescales, Equilibrium and Collisionality

A system of N particles interacting gravitationally with total mass M and
a reference dimension R (for example the radius containing half of the to-
tal mass) reaches a dynamic equilibrium state on a timescale comparable to
a few times the typical time (Tcr) needed for a particle to cross the system
(Tcr ≈ 1/

√

GM/R3). This is the response time needed to settle down to
virial equilibrium, that is 2K/|W | = 1, where K is the kinetic energy of
the system: K = 1/2

∑

i=1,N mi|~vi|
2, and W is its potential energy: W =

−1/2
∑

i6=j Gmimj/|~ri − ~rj | (assuming no external field). If the system is ini-
tially out of equilibrium, this is reached through mixing in phase space due to
fluctuations of the gravitational potential, a process called violent relaxation
(Lynden-Bell 1967).

Once the system is in dynamic equilibrium a long term evolution is possible,
driven by two-body relaxation. Energy is slowly exchanged between particles
and the system tends to evolve toward thermodynamic equilibrium and energy
equipartition. The timescale (Trel) for this process depends on the number of
particles and on the geometry of the system: Trel ∝ N/log(0.11N)Tcr (e.g. see
Spitzer 1987). N-body systems such as galaxies and dark matter halos have a
relaxation time much longer than the life of the Universe and are thus considered
collisionless systems. Smaller systems, such as globular and open clusters, are
instead collisional, as the relaxation time is shorter than their age. Two body
relaxation is also suppressed when one particle in the system dominates the
gravitational potential, such as in the case of solar system dynamics, where
planets are essentially quasi-test particles.

Close encounters between three or more particles not only contribute to en-
ergy exchange, but can also lead to the formation of bound subsystems (mainly
binaries). The formation and evolution of a binary population is best followed
through direct, unsoftened, N-body techniques.

A self-gravitating N-body system made of single particles has a negative
specific heat, that is it increases its kinetic energy as a result of energy losses
(Lynden-Bell & Wood 1968). This is a consequence of the virial theorem and
qualitatively it is analogous to the acceleration of a Earth artificial satellite in
presence of atmospheric drag. A negative specific heat system is thermodynam-
ically unstable and over the two body relaxation timescale it evolves toward
a gravothermal collapse, creating a core-halo structure, where the core pro-
gressively increases its concentration, fueling an overall halo expansion. The
collapse is eventually halted once three body interactions lead to the formation
of binaries. The so called ”core collapsed globular clusters” are considered to
be formed as a result of this mechanism.

2.2 Mean field approach: the Boltzmann equation

A system of N particles interacting gravitationally defines a 6N+1 dimensional
phase space given by the N position and velocity vectors associated to each
particle at each time t. The solution of the N-body problem defines a trajectory
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in this phase space. If the number of particles is large enough, that is if the two
body relaxation time is long compared to the time-frame one is interested in,
then a statistical description of the problem is possible. This allows us to pass
from a 6N+1 to a 6+1 dimension phase space. The idea is to construct a mean
field description of the dynamical system in terms of a single particle distribution
function f(~x,~v, t), where f(~x,~v, t)d3xd3v is proportional to the probability of
finding a particle in a 6D element of volume d3xd3v centered around position
~r and velocity ~v at time t. Within this simplified framework the knowledge of
the distribution function uniquely defines all the properties of the system. The
dynamic is described by the collisionless Boltzmann equation, which derives
essentially from the Liouville theorem:

Df

Dt
=

∂f

∂t
+ ~v ·

∂f

∂~x
−

∂φT

∂~x
·
∂f

∂~v
= 0, (3)

where the total potential field φT = φext(~x, t) + φ(~x, t) is the sum of an exter-
nal potential plus the self-consistent field φ(~x, t) defined from the distribution
function itself through the solution of the Poisson equation:

∇2φ(~x, t) = 4πGρ(~r, t), (4)

where ρ(~r, t) =
∫

f(~x,~v, t)d3v.
Given its high dimensionality (6+1), the collisionless Boltzmann equation is

usually solved by sampling the initial distribution function and then by evolving
the resulting N-body system by means of a numerical method that suppresses
two body interactions at small scales. The interaction is softened not only for
computational convenience to limit the maximum relative velocity during close
encounters but especially to prevent artificial formation of binaries. This is be-
cause a simulation particle in a collisionless run represents in reality an ensemble
of real particles (e.g. galaxies contain 1011 stars but simulations typically use
only N ∈ [106 : 109]). Note however that two body relaxation is driven by
close as well as by distant encounters, so softening does not suppress it. In
principle any numerical method that has a small scale softening is appropriate
for following collisionless dynamics.

A mean field description for an N-body system is possible also for collisional
systems, that is when the relaxation time is comparable to or shorter than
the timeframe of interest. In this case the collisionless Boltzmann equation is
modified by the introduction of a collision operator C[f ] on its right side:

Df

Dt
=

∂f

∂t
+ ~v ·

∂f

∂~x
−

∂φT

∂~x
·
∂f

∂~v
= C[f ]. (5)

In this framework the operator C[f ] describes the probability for particles to
enter/leave a phase space element as a result of gravitational encounters. The
collision operator C is generally constructed assuming that encounters are:

1. Markov processes, that is C depends only on the present state of the
system;
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2. local, that is only the velocity of the particles are changed and not their
positions;

3. weak, that is the typical velocity change is much smaller than the velocity
itself.

Under these assumptions Monte Carlo methods are available to solve the dy-
namics of the system (see next section). Applications of the collision operator
include dynamics of globular clusters and of self-interacting dark matter.

2.3 Mean Field Approach: analogies and differences with

fluid dynamics

The velocity moments of the Boltzmann Equation define a set of equations
known as the Jeans Equations (e.g. Binney & Tremaine 2007). The first three
equations of the set are formally identical to the Navier-Stokes equations for
a self-gravitating gas and, like in the fluid-dynamics analogy, express the con-
servation of mass, momentum and energy. Therefore the numerical algorithms
developed to follow the dynamics of N-body systems find a wide application
also in the context of fluid-dynamics, with one important example being the
Smoothed Particle Hydrodynamics (SPH) method (Gingold & Monaghan 1977).
The fundamental difference between the two cases is that the Jeans equations
are derived in the limit of a collisionless system, while the Navier-Stokes equa-
tions assume a highly collisional system, with the mean free path of a particle
approaching zero. For fluids, this leads to the definition of an equation of state,
which closes the Navier-Stokes equations. The Jeans Equations are instead
an infinite open set, where the n-th velocity moment depends on the n-th+1
moment.

2.4 Astrophysical domains

Based on the previous considerations about collisionality and timescales, four
main astrophysical domains for N-body simulations can be identified, each re-
quiring a different numerical technique to guarantee maximum performance and
accuracy:

Celestial mechanics (solar and extrasolar planetary systems). Here a single
body dominates the gravitational field and all the other objects move almost like
test particles, subject to reciprocal perturbations. In this framework very high
accuracy is required to correctly evaluate the perturbative terms and to avoid
being dominated by numerical noise such as time discretization and round-offs
errors.

Dense stellar systems, such as open clusters and globular clusters. These
collisional systems made of components of roughly equal mass present a rich
dynamics, with multiple close encounters of stars. The evolution requires to be
followed on a relaxation timescale with a correct description of the short range
interactions.
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Sphere of influence of a massive BH at the center of a stellar system. The
sphere of influence of a BH is the volume within which the gravity of the BH
dominates over that of the other particles. The situation resembles that of
solar system dynamics, but here given the very high density of stars two body
encounters are frequent, making the problem a difficult hybrid between the two
previous cases. In addition, Post Newtonian physics may need to be included if
high accuracy is required in the proximity of the BH.

Galaxy dynamics and cosmology. Galaxies, and especially dark matter halos,
are constituted by a very large number of particles, so that their dynamics can
be well described in terms of a mean field. Close encounters are not important
and softening is usually employed in these N-body simulations to avoid the
unphysical formation of binaries. Within this class, Self-Interacting Dark Matter
Particles need a special mention: if dark matter halos are made of Weakly
Interacting Massive Particles, then their dynamics can be modified by non-
gravitational self-interactions, especially effective at the center of cuspy dark
halos. The dynamics of such a system is described by the Collisional Boltzmann
Equation, which can be approximately solved using Fokker-Plank methods.

3 Newtonian gravity: methods

The history of N-body simulations starts with a pioneering attempt by Holm-
berg (1941), who followed the evolution of a 37 particle system, where the
force was calculated using lightbulbs and galvanometers (taking advantage of
the same r−2 scaling of electromagnetic and gravitational interactions). Com-
puter simulations started in the early sixties using up to 100 particles (e.g. see
von Hoerner 1960 and Aarseth 1963) and had their full bloom in the eighties
with the development of fast and efficient algorithms to deal with collisionless
systems, such as particle-mesh codes (see Hockney & Eastwood 1988 and ref-
erences therein) and the tree method (Barnes & Hut 1986). At the same time
regularization techniques were developed to deal with close encounters and bi-
nary dynamics in the case of direct simulations of a collisional system (e.g. see
Aarseth’s NBODY-X code series based on KS and chain regularization - Aarseth
2003 and references therein). These algorithm advancements were coupled with
tremendous progresses in the hardware, with the cpu speed growing exponen-
tially. In addition to parallelization of serial codes, the field advanced also
thanks to special purpose hardware, such as the GRAPE (Makino et al. 1997).
Today’s (2008) N-body simulations are performed with up to N = 105 (e.g.
see Baumgardt & Makino 2003) for direct integration codes over a two-body
relaxation timescale and up to N = 1010 for collisionless dynamics/cosmology
(e.g. see the Millennium Run - Springel et al. 2005). In the context of planetary
dynamics, self-gravitating systems of disk/ring particles with N ≈ 106 can be
followed over hundreds of dynamical times (e.g. Richardson et al. 2000). Ma-
jor breakthroughs are also expected in the near future thanks both to the next
generation GRAPE-DR and to double precision graphic processing units, which
provide extremely cost competitive high performance computing capabilities.
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3.1 Direct methods

Direct methods do not introduce approximations in the solution of the equa-
tions of motions and thus deliver the highest accuracy at the price of the longest
computation time, of order O(N2) per timestep. Integration is performed using
adaptive (individual) timesteps and commonly a fourth order Hermite integra-
tor. Close encounters and bound subsystems are treated exactly in terms of
Kustaanheimo-Steifel transformations. These essentially consist in transforma-
tions of coordinates using a perturbative approach over the analytical two body
solution. If more than two particles have a strong mutual interaction, then
a chain regularization strategy (Mikkola 1990) can be used, which consists in
recasting the problem in terms of a series of separate Kustaanheimo-Steifel in-
teractions. A state of the art, publicly available, serial direct N-body integrator
is Aarseth’s NBODY6. Even with this specialized software, the number of par-
ticles that can be effectively followed for timescales comparable to the Hubble
time is limited. For example, if one is interested in the dynamical evolution of
globular clusters, currently about N = 20000 is the practical limit for a serial
run, as such a run takes about 1000 cpu hours. A run with 106 particles carried
out for a similar number of relaxation times Trel would require about 108 cpu
hours. The algorithm can be parallelized, but in practice load imbalances may
saturate the gain in efficiency, so some of the most cpu demanding simulations
have been carried out on special purpose hardware, such as the GRAPE, where
the chip architecture has been optimized to compute gravitational interactions,
thus delivering Teraflops performance.

3.2 Tree codes

The tree code method (Barnes & Hut 1986) provides a fast, general integrator
for collisionless systems, when close encounters are not important and where the
force contributions from very distant particles does not need to be computed at
very high accuracy. In fact, with a tree code, small scale, strong interactions
are typically softened (but see McMillan & Aarseth 1993), while the potentials
due to distant groups of particles are approximated by multipole expansions
about the group centers of mass. The resulting computation time that scale as
O(Nlog(N)) but the approximations introduce some (small) errors. The errors
in the long-range component of the gravitational acceleration are controlled by
a single parameter (the so called opening angle) that determines how small and
distant a group of particles must be to use the approximation. This strategy
works well to keep the average force error low, but a worst case scenario analysis
highlights that unbound errors can arise for rare, but astrophysically reasonable
configurations, such as that of the classic ”exploding galaxy” (Salmon & Warren
1994). In addition, force errors from the tree code may lead to violation of
momentum conservation. Typical implementations of the tree code expand the
potentials to quadrupole order and construct a tree hierarchy of particles using
a recursive binary splitting algorithm. The tree does not need to be recomputed
from scratch at every timestep, saving significant cpu time. Systems with several
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hundred thousands of collisionless particles can be easily simulated on a GFlops
workstation for a Hubble time using this method.

3.3 Fast Multipole Methods

A standard tree code implementation does not take advantage of the fact that
nearby particles will be subject to a similar acceleration due to distant groups
of particles. The Fast Multipole Method (Greengard & Rokhlin 1987) exploit
this idea and uses a multipole expansion to compute the force from a distant
source cell within a sink cell. This additional approximation of the gravitational
interaction was claimed to reduce the complexity from O(Nlog(N)) to O(N),
but the exact scaling seems implementation dependent and has been debated
in the literature (e.g. see Dehnen 2000 and references therein). One advantage
of the fast multipole method is that the symmetry in the treatment of sink
and source cells with respect to the multipole expansion can guarantee an ex-
act conservation of the momentum. Recent successful implementations of fast
multipole codes or hybrids with tree code scheme, include Dehnen’s Cartesian
expansion scheme (the GyrfalcON code- Dehnen 2000) and PKDGRAV (Stadel
2001).

3.4 Particle-mesh codes

The particle mesh method represents another route to speed up direct force
evaluation for collisionless systems. In this case the gravitational potential of the
system is constructed over a grid starting from the density field and by solving
the associated Poisson equation. Particles do not interact directly between
each other but only through a mean field. The method essentially softens the
gravitational interactions at small scales, that is below the cell length. The
density field is constructed using a kernel to split the mass of the particles to
the grid cells around the particle position. The simplest choice is to assign all
the mass to a single cell, but this leads to significant force fluctuations, which
can be reduced using a cloud in cell (8 points) or a triangular shaped cloud (27
points) kernel. The Poisson equation is typically solved using a Fast Fourier
Transform, but other grid methods such as successive overrelaxation can also
be used - e.g. see Bodenheimer et al. (2007). The deriving force, defined on the
grid, is then assigned back to the particles using the same kernel employed for
the density field construction, in order to avoid spurious self forces. The method
achieves a linear complexity in the number of particles and (O(Ng log(Ng)) in the
number of grid cells (this latter scaling is that of the FFT method). The price
to pay is in terms of short range accuracy as the force is a poor approximation
of Newton’s law up to several grid spacing of distance.

3.5 Adaptive Mesh Refinement method

The dynamic range of particle-mesh codes can be increased by using an adap-
tive rather than a static grid to solve the Poisson Equation. In the Adaptive
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Mesh Refinement (AMR) method the grid elements are concentrated where a
higher resolution is needed, for example around the highest density regions. One
possibility to obtain an adaptive resolution is to first construct a low-resolution
solution of the Poisson Equation and then to progressively refine regions where
the local truncation error (estimated through the Richardson extrapolation) is
highest. A multigrid structure needs to take into account issues such as matching
the solution at the grid interfaces. AMR codes are well suited for cosmological
simulations (e.g. see the ENZO code, Bryan & Norman 1998).

3.6 Self consistent field methods

A variant over the Particle Mesh code is the expansion of the density and poten-
tial of the system in terms of a basis of orthogonal eigenfunctions. Clutton-Brock
(1972) was one of the first to apply this idea in stellar dynamics, while a modern
implementation is that of Hernquist & Ostriker (1992). This method guaran-
tees at fixed computational resources a higher accuracy than the tree code and
the particle mesh algorithms, provided that the set of basis function is appro-
priately selected. This limits in practice a general application of the method,
which remains however very competitive for the study of the dynamical stability
of collisionless systems constructed from distributions functions models.

3.7 P3M and PM-Tree codes

In order to increase the force resolution of particle mesh codes it has been pro-
posed to couple a mean field description on large scales with a direct, softened,
treatment of the gravitational interactions on distances of the order of or below
a few grid spacing. This method is called P 3M (Hockney & Eastwood 1988):
Particle-Particle-Particle-Mesh and efficiently increases the dynamic range of
the parent PM algorithm. However in presence of strong clustering a large num-
ber of particles will interact directly between each other, slowing down signifi-
cantly the computation to O(N2). This problem can be resolved by using adap-
tive meshes, so that the spatial resolution is refined in regions of high density.
Adaptive P 3M codes have a computational cost which scales as O(Nlog(N)),
like in a tree code. Finally another possibility is to resort to a tree code for
the short range force evaluation leading to a hybrid PM-Tree scheme. These
methods are generally extremely well suited for cosmological simulations, for
example see Gadget2 (Springel 2005).

3.8 Celestial mechanics codes

Computational Celestial Mechanics refers to a series of methods targeted at
studying the dynamics of small N systems (N . 20). The smallest non trivial
N is N=3, that is the three body problem, which has many applications ranging
from space flight to planets satellite motions and to binary-single stars encoun-
ters. Celestial mechanics requires extremely high precision given the chaotic
nature of the N-body problem. Numerical methods are based on the use of

9



local system of coordinates, to fight round-off errors in systems with a wide
dynamic range, such as in the study of star-planet-satellite problems, as well
as on the variational equations formalism and on perturbation theory to take
advantage of the analytical, unperturbed motion of planets in the gravitation
field of their star (e.g. see Beutler 2005). In this context symplectic integrators
are widely used (e.g. see Wisdom & Holman 1991; Leimkuhler & Reich 2005).

4 Mean Field Methods

As an alternative to particle based N-body methods, the dynamics of a system
of particles interacting gravitationally can be followed by solving the time de-
pendent Boltzmann Equation coupled with the self-consistent Poisson equation.

4.1 Grid based solvers for the Collisionless Boltzmann

Equation

This approach can take advantage of standard computational methods devel-
oped to solve partial differential equations, such as successive over-relaxation
and conjugate gradient methods. However it requires to solve a highly dimen-
sional (6D+time) non-linear system of partial differential equations. In general,
the bottleneck is thus the very large amount of memory needed (for example,
Terabites just to have a moderate resolution grid with 100 elements in each
dimension). However this method is competitive if the astrophysical problem of
interest presents symmetries that reduce the number of dimensions needed in
the model. For example, in the case of globular cluster dynamics a very good
approximation can be obtained via a 3 dimensional model by assuming spherical
symmetry in the position space (1D) and radial anisotropy in the velocity space
(2D).

4.2 Fokker-Planck and Monte Carlo methods

These methods solve the collisional Boltzmann equation starting from a given
distribution function and by following test particles in the six dimensional
position-velocity phase space. At each timestep the velocity of the particles
is perturbed by random fluctuations accordingly to the assumed form for the
collision operator C[f ], which depends on computed cross sections for two, three
and four body encounters. The complexity of Monte Carlo codes is linear with
the number of particles and thus a realistic number of particles can be used for
simulations of collisional systems with N > 105 with a serial code. The method
is ideal for exploring grids of initial conditions, after proper validation through
comparison with direct integration (e.g. see Heggie et al. 2006).
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4.3 Beyond Newton: strong gravitational fields

In presence of a strong gravitational field, such as that in the proximity of the
event horizon of a black hole, N-body simulations cannot be based on Newtonian
physics, but must take into account a general relativity framework. As a numer-
ical solution of the Einstein equation is extremely challenging, Post-Newtonian
approximations are used when the gravitational field does not deviate too much
from the Newtonian case. Post-Newtonian corrections are typically good enough
to treat most astrophysical problems of the dynamics of stars around a black
hole. A full general relativity framework is only required to study the merging
and gravitational waves emission of two black-holes (e.g. see Baker et al. 2006).

5 Hardware

An alternative approach to increase the efficiency of numerical solution of the
N-body problem is to optimize the hardware. For direct simulations this ap-
proach can be very effective, thanks to the fact that the bottle neck of compu-
tation is just the evaluation of the gravitational force, which has a very simple
expression. Along this route the GRAPE (GRavityPipE) concept has been ex-
tremely effective. The basic idea is to optimize a hardware pipeline to compute
(~ri − ~rj)/|~ri − ~rj |

3. This special purpose hardware can then be interfaced with
a general purpose computer, which takes care of all the other numerical op-
erations required to solve the equations of motions. With the GRAPE-6, the
largest simulation on a collisional timescale published to date has N=131028
(Baumgardt & Makino 2003).

Another recent promising hardware development is the possibility to use
Graphic Cards (GPUs) to carry out the cpu intensive force evaluation. The
performance of current generation of GPUs appears to be superior (in terms
of Flops/$ ratio) to that of the GRAPE6 series (Portegies-Zwart et al. 2007)
even if one important limitation of GPUs is that they currently operate in single
precision.

6 Simulation environments

In addition to the availability of stand-alone codes, several software environ-
ments have been created that contain various tools to set up initial conditions,
run simulations, and analyze and visualize their results. Some examples are
NEMO, Starlab, ACS and MUSE (see below for links to their web-pages).

7 Suggested readings

7.1 Books

• ”Computer Simulation Using Particles” Hockney, R.W. and Eastwood,
J.W. 1988
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• ”Gravitational N-Body Simulations: Tools and Algorithms” Aarseth, S.
2003

• ”The Gravitational MillionBody Problem” Heggie, D.C. and Hut, P. 2003

• ”Methods of Celestial Mechanics” Beutler, G. 2005

• ”Numerical Recipes” Press, W.H., Teukolsky, S.A., Vetterling, W.T. and
Flannery B.P. 2007

• ”Numerical Methods in Astrophysics: An Introduction” Bodenheimer, P.,
Laughlin, G.P., Rozyczka, M. and Yorke, H.W. 2007

7.2 Review articles

* ”Simulations of Structure Formation in the Universe” Bertschinger, E. 1998,
ARA&A, 36, 599

7.3 Web Material

• ”The N-body Constitution” by Lake, G, Katz, N., Quinn T. and Stadel. J.
(http://www-hpcc.astro.washington.edu/old content/siamhtml/siamhtml.html)

8 Open source codes

• Aarseth’s direct integration codes: http://www.ast.cam.ac.uk/s̃verre/web/pages/nbody.htm

• ACS, a collection of tools and introductory texts: http://www.artcompsci.org/

• ENZO, a cosmological AMR code: http://lca.ucsd.edu/portal/software/enzo

• Gadget2, a cosmological PM-tree+SPH code (massively parallel): http://www.mpa-garching.mpg.de/gadget/

• Mercury (a mixed variable symplectic integrator code for planetary dy-
namics): http://www.arm.ac.uk/̃jec/home.html

• MUSE, a software framework for simulations of dense stellar systems:
http://muse.li/

• NEMO collection (includes particle-grid and tree codes): http://bima.astro.umd.edu/nemo/

• Starlab (including the direct integration Kira code): http://www.ids.ias.edu/s̃tarlab/starlab.html
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